DATA SCIENCE

Green and White Simple Illustrative Data Analytics Presentation

Data Science (21 days Program Outline)

Week 1: Core Python, Data Handling, and Statistics (Days 1–7)


πŸ“ Day 1 – Intro to Data Science

  • What is Data Science?
  • Lifecycle: Data Collection β†’ Cleaning β†’ Analysis β†’ Modeling β†’ Deployment
  • Tools: Jupyter, Python, Git, Excel


πŸ“ Day 2 – Python for Data Science

  • Data types, loops, functions
  • List, Dict, Tuple, Set
  • File handling


πŸ“ Day 3 – Numpy & Pandas Basics

  • Arrays and matrix operations (Numpy)
  • Series & DataFrame (Pandas)
  • Importing CSV, Excel


πŸ“ Day 4 – Data Cleaning & Preprocessing

  • Handling missing values
  • Duplicates, nulls
  • Renaming, replacing, mapping


πŸ“ Day 5 – Exploratory Data Analysis (EDA)

  • Descriptive statistics
  • Groupby, sorting, filtering
  • Hands-on: Titanic dataset


πŸ“ Day 6 – Data Visualization

  • Matplotlib, Seaborn
  • Plot types: histogram, bar, scatter, box, heatmap
  • Hands-on: Correlation analysis


πŸ“ Day 7 – Statistics for Data Science

  • Mean, median, mode, std dev, variance
  • Probability basics
  • Distributions: normal, binomial


Week 2: Advanced Stats, ML Algorithms, and Model Building (Days 8–14)


πŸ“ Day 8 – Inferential Stats & Hypothesis Testing

  • Confidence intervals
  • t-test, chi-square, ANOVA
  • p-value explained


πŸ“ Day 9 – Linear Regression

  • Simple and multiple regression
  • RΒ², adjusted RΒ²
  • Hands-on: House price prediction


πŸ“ Day 10 – Classification: Logistic Regression

  • Binary vs multi-class classification
  • Sigmoid function
  • Evaluation: Confusion matrix, ROC curve


πŸ“ Day 11 – Decision Trees & Random Forest

  • Splitting criteria: Gini, Entropy
  • Overfitting, pruning
  • Hands-on: Loan approval prediction


πŸ“ Day 12 – KNN & Naive Bayes

  • Distance metrics in KNN
  • Bayes theorem and Gaussian NB
  • Hands-on: Email spam detection


πŸ“ Day 13 – Unsupervised Learning

  • K-means clustering
  • Elbow method
  • PCA for dimensionality reduction


πŸ“ Day 14 – Model Evaluation & Tuning

  • Cross-validation
  • GridSearchCV, RandomSearchCV
  • Bias-variance tradeoff

Β 
Week 3: Projects, Real-World Tools & Career Prep (Days 15–21)


πŸ“ Day 15 – Time Series Analysis

  • Date/time handling
  • Rolling mean, autocorrelation
  • Forecasting with ARIMA (brief)


πŸ“ Day 16 – Natural Language Processing (NLP)

  • Text cleaning (tokenize, stopwords, stemming)
  • TF-IDF
  • Sentiment analysis mini project


πŸ“ Day 17 – SQL for Data Science

  • SELECT, WHERE, JOIN, GROUP BY
  • Subqueries
  • Practice with sample database (e.g., SQLite or MySQL)


πŸ“ Day 18 – Working with Real Datasets

  • Kaggle datasets
  • End-to-end EDA + model
  • Hands-on: Diabetes prediction / Customer churn


πŸ“ Day 19 – Mini Capstone Project

Choose 1:

  • Sales prediction
  • Fake news detection
  • Movie recommendation system
  • Smart city traffic analysis


πŸ“ Day 20 – Model Deployment

  • Save model with Pickle/Joblib
  • Flask/Streamlit web app
  • Deploy to Heroku (or local server)


πŸ“ Day 21 – Career in Data Science

  • Resume tips, GitHub portfolio
  • Data science roles: Analyst, ML engineer, DS
  • Certifications, interview prep (case studies, SQL/ML Qs)


🧰 Tools & Libraries:

  • Python (Jupyter Notebook)
  • Numpy, Pandas, Matplotlib, Seaborn
  • Scikit-learn
  • SQL (SQLite / MySQL)
  • Streamlit or Flask for deployment
  • Kaggle for datasets

Schedule

1st June
Hyderabad
Bits Pilani Campus
Available
19th May
Visakhapatnam
Gitam University
Available
gj 3
INTERACTIVE SESSION