BUSINESS ANALYTICS

Copy of Blue and White Simple Cloud Computing Mind MapQuantum Computing-7

Business Analytics (21 days Program Outline)

WEEK 1: Business Analytics Foundations (Days 1–7)


πŸ“ Day 1 β€” Introduction to Business Analytics

  • What is Business Analytics?

  • Types: Descriptive, Predictive, Prescriptive


πŸ“ Day 2 β€” Business Problems to Data Problems

  • How business questions translate into analytical questions

  • Framing hypotheses


πŸ“ Day 3 β€” Data Types and Data Sources

  • Structured vs Unstructured Data

  • Primary vs Secondary data sources


πŸ“ Day 4 β€” Excel Basics for Analytics

  • Formulas, Conditional Formatting, Sorting/Filtering

  • Introduction to Pivot Tables


πŸ“ Day 5 β€” Data Cleaning and Preparation

  • Handling missing values

  • Removing duplicates

  • Basic data wrangling (Excel)


πŸ“ Day 6 β€” Introduction to SQL for Analysts

  • SELECT, WHERE, ORDER BY

  • Simple Queries to fetch business insights


πŸ“ Day 7 β€” Mini Project 1

  • Analyze a sales dataset (Excel + SQL):

    • Total Revenue

    • Best-selling product

    • Revenue by region


WEEK 2: Analytics Techniques and Visualizations
(Days 8–14)


πŸ“ Day 8 β€” Basic Statistics for Business

  • Mean, Median, Mode

  • Variance, Standard Deviation


πŸ“ Day 9 β€” Exploratory Data Analysis (EDA)

  • Identify trends and patterns

  • EDA on Excel dataset


πŸ“ Day 10 β€” Data Visualization Concepts

  • Importance of visuals in business

  • Charts: Bar, Pie, Line, Histogram


πŸ“ Day 11 β€” Building Dashboards in Excel

  • Slicers, Pivot Charts, KPI Cards


πŸ“ Day 12 β€” Introduction to Power BI / Tableau

  • Connecting to data

  • Basic dashboard creation


πŸ“ Day 13 β€” Business Case Study 1

  • Example: Analyze Customer Churn data

  • Identify key drivers of churn


πŸ“ Day 14 β€” Mini Project 2

  • Build a Customer Sales Dashboard (Power BI / Excel)


WEEK 3: Advanced Techniques, Reporting, and Decision Making
(Days 15–21)


πŸ“ Day 15 β€” Predictive Analytics Basics

  • Regression, Classification intro

  • Concept of forecasting


πŸ“ Day 16 β€” Introduction to Python for Analysts

  • Setting up Python

  • Simple Pandas operations (optional but powerful)


πŸ“ Day 17 β€” Business Storytelling with Data

  • How to present findings to non-technical stakeholders

  • Building a compelling report deck


πŸ“ Day 18 β€” A/B Testing and Business Experimentation

  • What is A/B Testing?

  • Simple example: Website button color test


πŸ“ Day 19 β€” Metrics and KPIs for Different Industries

  • Marketing: CTR, CPA, ROI

  • Retail: Conversion Rate, Average Order Value

  • SaaS: MRR, Churn Rate


πŸ“ Day 20 β€” Career Paths in Business Analytics

  • Business Analyst vs Data Analyst vs Data Scientist

  • Certifications and further learning (Google, IBM, etc.)


πŸ“ Day 21 β€” Final Capstone Project

  • Full Business Analysis Report:

    • Choose a public dataset

    • Perform data cleaning, EDA, visualization

    • Write business insights and recommendations

Schedule

1st June
Hyderabad
Bits Pilani Campus
Available
19th May
Visakhapatnam
Gitam University
Available
gj 3
INTERACTIVE SESSION