ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

  • Home 4
  • Event
  • ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
html-css-collage-concept-with-person

Artificial Intelligence & Machine Learning (21 days Program Outline)

Week 1: Foundations of AI & Machine Learning (Days 1–7)

 Day 1 – Introduction
- What is AI vs ML vs Deep Learning
- Types of ML: Supervised, Unsupervised, Reinforcement Learning
- AI applications
- Tools: Python, Jupyter, scikit-learn, Pandas, Numpy
Day 2 – Python for ML
- Data types, loops, functions
- Numpy for numerical data
- Pandas for data handling
- Matplotlib & Seaborn for visualization
Day 3 – Math for ML
- Linear algebra basics
- Probability & stats (mean, variance, std dev, distributions)
- Gradient descent intro
Day 4 – Data Preprocessing
- Handling missing data, outliers
- Label encoding, one-hot encoding
- Feature scaling (Normalization, Standardization)
- Train/test split
Day 5 – Supervised Learning Overview
- Regression vs Classification
- Model training/testing
- Evaluation metrics (accuracy, precision, recall, F1)
Day 6 – Linear Regression
- Simple/multiple linear regression
- Loss function, gradient descent
- Hands-on: Predict house prices
Day 7 – Logistic Regression
- Binary classification
- Sigmoid function
- Hands-on: Classify diabetes dataset

Week 2: Core ML Algorithms (Days 8–14)

Day 8 – Decision Trees & Random Forests
- Tree building, overfitting
- Ensemble methods
- Hands-on: Titanic survival prediction
Day 9 – Support Vector Machines (SVM)
- Linear & kernel SVM
- Hyperparameters
- Hands-on: Classify digits
Day 10 – K-Nearest Neighbors (KNN)
- Lazy learning
- Choosing K
- Hands-on: Iris classification

 Day 11 – Naive Bayes
- Bayes theorem
- Types: Gaussian, Multinomial
- Hands-on: Spam detection
Day 12 – Unsupervised Learning (Clustering)
- K-Means clustering
- Elbow method
- Hands-on: Customer segmentation
Day 13 – Dimensionality Reduction
- PCA (Principal Component Analysis)
- t-SNE (for visualization)
- Hands-on: Visualize MNIST data
Day 14 – Model Evaluation & Tuning
- Cross-validation
- Hyperparameter tuning (GridSearch, RandomSearch)
- Avoiding overfitting (regularization, dropout)

Week 3: Deep Learning & Projects (Days 15–21)

Day 15 – Intro to Deep Learning
- Neural networks
- Perceptron, activation functions
- Feedforward, backpropagation
Day 16 – TensorFlow/Keras Basics
- Building models in Keras
- Compile, fit, evaluate
- Hands-on: Binary classifier (Keras)
Day 17 – CNNs (Convolutional Neural Networks)
- Image data
- Convolutions, pooling, filters
- Hands-on: Classify MNIST/CIFAR10
Day 18 – RNNs (Recurrent Neural Networks)
- Sequence modeling
- LSTM, GRU
- Hands-on: Sentiment analysis
Day 19 – NLP with ML
- Text preprocessing
- TF-IDF, Word2Vec
- Hands-on: Text classification
Day 20 – Mini Project Day
Choose 1:
- Stock price prediction (Regression)
- Fake news detection (NLP)
- Disease prediction (Classification)
- Image classifier (CNN)
Day 21 – Final Wrap-up & Deployment
- Review concepts
- Model deployment: Streamlit / Flask intro
- Exporting ML models with Pickle
- Next steps in AI (e.g., GPT, RL, MLOps)

🛠 Tools You’ll Use: – Python – Jupyter Notebook – scikit-learn – TensorFlow/Keras – Pandas, Numpy, Matplotlib – Google Colab (optional for GPU)

Schedule

1st June
Hyderabad
Bits Pilani Campus
Available
19th May
Visakhapatnam
Gitam University
Available
gj 3
INTERACTIVE SESSION